ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

Image Color Missing Component
Violation 12%

10%
Extra

Component
6%

Incorrect Text
Violation

6%
Incorrect

Font Color In;;ge
Violation
9% o
*
Fu.nt Sfyle Horizontal
Violation Translation

8% 10%

5%

Size Vertical
49 ~ H&V Translation
Size 16%
H = Horizontal 5%

V = Vertical

«+ Component Type 1%
Trans = Translation

4 Component Shape 1%
Figure 2: Distribution of Different Types of Industrial DVs

3.1 Study Setting & Methodology

The goal of this study is to derive a taxonomy of the different
types of DVs and examine the distribution of these types induced
during the mobile app development process. The context of this
study is comprised of a set of 71 representative mobile app mock-
up and implementation screen pairs from more than 12 different
internal apps, annotated by design teams from our industrial partner
to highlight specific instances of resolved DVs. This set of screen
pairs was specifically selected by the industrial design team to
be representative both in terms of diversity and distribution of
violations that typically occur during the development process.

In order to develop a taxonomy and distribution of the violations
present in this dataset, we implement an open coding methodology
consistent with constructivist grounded theory [17]. Following the
advice of recent work within the SE community [45], we stipulate
our specific implementation of this type of grounded theory while
discussing our deviations from the methods in the literature. We
derived our implementation from the material discussed in [17]
involving the following steps: (i) establishing a research problem
and questions, (ii) data-collection and initial coding, and (iii) focused
coding. We excluded other steps described in [17], such as memoing
because we were building a taxonomy of labels, and seeking new
specific data due to our NDA limiting the data that could be shared.
The study addressed the following research question: What are the
different types and distributions of GUI design violations that occur
during industrial mobile app development processes?

During the initial coding process, three of the authors were sent
the full set of 71 screen pairs and were asked to code four pieces of
information for each example: (i) a general category for the viola-
tion, (ii) a specific description of the violation, (iii) the severity of
the violation (if applicable), and (iv) the Android GC types affected
(e.g., button). Finally, we performed a second round of coding that
combined the concepts of focused and axial coding as described in
[17]. During this round two of the authors merged the responses
from all three types of coding information where at least two of
the three coders agreed. During this phase similar coding labels

K. Moran, B. Li, C. Bernal-Cardenas, D. Jelf, and D. Poshyvanyk

were merged (e.g., “layout violation" vs. “spatial violation"), conflicts
were resolved, two screen pairs were discarded due to ambiguity,
and cohesive categories and subcategories were formed. The author
agreement for each of the four types of tags is as follows: (i) general
violation category (100%), (ii) specific violation description (96%),
(iif) violation severity (100%), and (iv) affected GC types (84.5%).

3.2 Grounded Theory Study Results

Our study revealed three major categories of design violations,
each with several specific subtypes. We forgo detailed descriptions
and examples of violations due to space limitations, but provide
examples in our online appendix [35]. The derived categories and
subcategories of DVs, and their distributions, are illustrated in Fig. 2.
Overall 82 DVs were identified across the 71 unique screen pairs
considered in our study. The most prevalent category of DVs in our
taxonomy are Layout Violations (~ 40%), which concern either a
translation of a component in the x or y direction or a change in the
component size, with translations being more common. The second
most prevalent category (~ 36%) consists of Resource Violations,
which concern missing components, extra components, color dif-
ferences, and image differences. Finally, about one-quarter (~ 24%)
of these violations are Text Violations, which concern differences in
components that display text. We observed that violations typically
only surfaced for “leaf-level" components in the GUI hierarchy.
That is, violations typically only affected atomic components &
not containers or backgrounds. Only 5/82 of examined violations
(= 6%) affected backgrounds or containers. Even in these few cases,
the violations also affected “leaf-level" components.

The different types of violations correspond to different inequali-
ties between the attribute tuples of corresponding GUI-components
defined in Sec. 2. This taxonomy shows that designers are charged
with identifying several different types of design violations, a daunt-
ing task, particularly for hundreds of screens across several apps.

4 THE GVT APPROACH
4.1 Approach Overview

The workflow of GvT (Fig. 3) proceeds in three stages: First in the
GUI-Collection Stage, GUI-related information from both mock-ups
and running apps is collected; Next, in the GUI-Comprehension Stage
leaf-level GCs are parsed from the trees and a KNN-based algorithm
is used to match corresponding GCs using spatial information; Fi-
nally, in the Design Violation Detection Stage DVs are detected using
a combination of methods that leverage spatial GC information and
computer vision techniques.

4.2 Stage 1: GUI Collection

4.2.1 Mock-Up GUI Collection. Software Ul/UX design profes-
sionals typically use professional-grade image editing software
(such as Photoshop[1] or Sketch[10]) to create their mock-ups. De-
signers employed by our industrial partner utilize the Sketch design
software. Sketch is popular among mobile UI/UX designers due to
its simple but powerful features, ease of use, and large library of
extensions [11]. When using these tools designers often construct
graphical representations of smartphone applications by placing
objects representing GCs (which we refer to as mock-up GCs) on a
canvas (representing a Screen S) that matches the typical display
size of a target device. In order to capture information encoded
in these mock-ups we decided to leverage an export format that



