
 

Class Type (Rule) Real Example 

Informative 

Functional flaw that produces incorrect or unexpected result None of the pictures will load in my news feed. 

Performance flaw that degrades the performance of Apps 
It lags and doesn't respond to my touch which almost always causes me 

to run into stuff. 

Requests to add/modify features 

Amazing app, although I wish there were more themes to choose from. 

Please make it a little easy to get bananas please and make more 

power ups that would be awesome. 

Requests to remove advertisements/notifications So many ads its unplayable! 

Requests to remove permissions This game is adding for too much unexplained permissions. 

Non-

informative 

Pure user emotional expression 
Great fun can't put it down! 

This is a crap app. 

Descriptions of (apps, features, actions, etc.) I have changed my review from 2 star to 1 star. 

Too general/unclear expression of failures and requests Bad game this is not working on my phone. 

Questions and inquiries How can I get more points? 

Figure 1: Different Types of Informative and Non-informative Information for App Developers

Second, although the filtering step in AR-Miner can help
remove some types of spam reviews, our major objective is
to rank the “informative” user reviews for app developers.

There also exist several pieces of work on ranking reviews
on the social web. For example, Hsu et al. [26] applied Sup-
port Vector Regression to rank the reviews of a popular news
aggregator Digg. Dalal et al. [18] explored multi-aspects
ranking of reviews of news articles using Hodge decomposi-
tion. Different from both works, our work aims to rank the
reviews according to their importance (not quality) to ap-
p developers (not users) from the software engineering per-
spective. Besides, we propose a completely different ranking
model in solving our problem.

2.3 Mining Data in Traditional Channels
Our work is also related to studies that apply data mining

(machine learning) techniques on data stored in traditional
channels to support developers with the “user feedback ex-
traction” task. Specifically, the first category of related work
in this field is to address problems in bug repositories [38,
9, 8, 25]. For example, Sun et al. [38] proposed a discrim-
inative approach to detect duplicate bug reports. Anvik et
al. [9] compared several classification algorithms for solving
the bug assignment problem. Antoniol et al. [8] developed
a machine learning approach to distinguish bugs from non-
bugs. In addition, another category of related work is to
solve problems in other traditional channels (e.g., request
repositories [16, 15], emails [10], crash reporting systems
[19]). For example, Cleland-Huang et al. [15] proposed a
machine learning approach to categorize product-level re-
quirements into pre-defined regulatory codes. Dang et al.
[19] developed an approach based on similarity measures to
cluster crash reports. Bacchelli et al. [10] applied a Naive
Bayes classifier to classify email contents at the line-level.

Compared with the previous studies in this area, our work
differs in that we formulate and solve a brand new problem
in a new channel with its distinct features.

3. THE PROBLEM STATEMENT
The “user feedback extraction” task is extremely impor-

tant in bug/requirement engineering. In this paper, we for-
mally formulate it as a new research problem, which aims
to facilitate app developers to find the most “informative”
information from large and rapidly increasing pool of raw
user reviews in app marketplace.

Consider an individual app, in a time interval T , it re-
ceives a list of user reviews R∗ with an attribute set A =

{A1, A2, . . . , Ak}, and ri = {ri.A1, ri.A2, . . . , ri.Ak} is the
i-th review instance in R∗. Without loss of generality, in
this work, we choose A = {Text,Rating, T imestamp}, s-
ince these are the common attributes supported in all main-
stream app marketplaces. Table 1 shows an example of R∗
with t review instances. In particular, we set the Text at-
tribute of ri at the sentence level. We will explain how to
achieve and why we use this finer granularity in Section 4.2.

Table 1: Example of A List of User Reviews R∗, R
= Rating, TS = Timestamp

ID Text R TS

r1
Nice application, but lacks some important

4 Dec 09
features like support to move on SD card.

r2 So, I am not giving five star rating. 4 Dec 09

r3 Can’t change cover picture. 3 Jan 18

r4 I can’t view some cover pictures even mine. 2 Jan 10

r5 Wish it’d go on my SD card. 5 Dec 15

. . . . . . . . . . . .

rt . . . . . . . . .

In our problem, each ri in R∗ is either “informative”
or “non-informative”. Generally, “informative” implies ri
contains information that app developers are looking to i-
dentify and is potentially useful for improving the quality
or user experience of apps. We summarize different types
of “informative” as well as “non-informative” information in
Figure 1 (one or two examples for each type). For example,
r1, r3, r4 and r5 shown in Table 1 are “informative”, since
they report either bugs or feature requests, while r2 is “non-
informative”, as it is a description of some user action, and
developers cannot get constructive information from it.

Remark. The summarization shown in Figure 1 is not ab-
solutely correct, since the authors are not app developers.
In fact, even for real app developers, no two people would
have the exact same understanding of “informative”. This
is an internal threat of validity in our work. To alleviate
this threat, we first studied some online forums (e.g., [6]) to
identify what kinds of information do real app developers
consider as constructive, and then derived the summariza-
tion shown in Figure 1 based on the findings.

Generally, given a list of user reviews R∗ of an app (e.g.,
the one shown in Table 1), the goal of our problem is to
filter out those “non-informative” reviews (e.g., r2), then (i)
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