
Table 1: Categories Definition
Category Description User Feedback Example

Information Giving Sentences that inform or
update users or developers
about an aspect related to
the app

“This app runs so smoothly
and I rarely have issues
with it anymore"

Information Seeking Sentences related to at-
tempts to obtain information
or help from other users or
developers

“Is there a way of getting
the last version back?"

Feature Request Sentences expressing ideas,
suggestions or needs for im-
proving or enhancing the app
or its functionalities

“‘Please restore a way to
open links in external
browser or let us save
photos"

Problem Discovery Sentences describing issues
with the app or unexpected
behaviours

“App crashes when new power
up notice pops up"

Other Sentences do not providing
any useful feedback to devel-
opers

“What a fun app"

user reviews, that are useful for maintenance perspective, in
five categories: feature request, problem discovery, informa-
tion seeking, information giving and other. Table 1 shows,
for each category: (i) the category name, (ii) the category
description and (iii) an example sentence belonging to cat-
egory. As described in [15], these categories emerged from
a systematic mapping between the taxonomy of topics oc-
curring in app reviews described by Pagano et al. [3] and
the taxonomy of categories of sentences occurring in devel-
opers’ discussions over development-specific communication
means [16, 17]. Specifically, such taxonomy is defined to
model feedback from user reviews that are important from
a maintenance perspective.

Figure 1: ARdoc’s architecture overview

Figure 1 depicts ARdoc’s architecture. The main tool’s
module is represented by the Parser, which prepares the
text for the analysis (i.e., text cleaning, sentence splitting,
etc.). Our Parser exploits the functionalities provided by
the Stanford CoreNLP API [18], which annotates the nat-
ural text with a set of meaningful tags. Specifically, it in-
stantiates a pipeline with annotations for tokenization and
sentences splitting. Once the text is divided into sentences
ARdoc extracts from each of these sentences three kinds of
features: (i) the lexicon (i.e., the words used in the sen-
tence) through the TAClassifier, the structure (i.e., gram-
matical frame of the sentence) through the NLPClassifier,
and (iii) the sentiment (i.e., a quantitative value assigned to
the sentence expressing an affect or mood) through the SA
Classifier. Finally, in the last step the MLClassifier uses
the NLP, TA and SA information extracted in the previous
phase of the approach to classify app reviews according to
the taxonomy reported in Table 1 by exploiting a Machine
Learning (ML) algorithm. We briefly describe, in Section
2.1, the information extracted by our tool from app reviews
and, in Section 2.2, the classification techniques we adopted.

2.1 Features Extraction
The NLPClassifier implements a set of NLP heuristics

to automatically detect recurrent linguistic patterns present
in user reviews. Through a manual inspection of 500 re-
views from different kinds of apps we identified 246 recur-
rent linguistic patterns1 often occurring in app reviews, and
for each of these patterns we implemented an NLP heuristic
in order to automatically recognize it (more details about
the process performed for the definition of the heuristics are
available in our previous work [15]). The NLP classifier

uses the Stanford Typed Dependencies (STD) parser [19], a
natural language parser which represents dependencies be-
tween individual words contained in sentences and labels
each dependency with a specific grammatical relation (e.g.,
subject or direct/indirect object).
Through the analysis of the typed dependencies, each NLP
heuristic tries to detect the presence of a text structure that
may be connected to one of the categories in Table 1, look-
ing for the occurrences of specific keywords in precise gram-
matical roles and/or specific grammatical structures. For
each sentence in input, the NLPClassifier returns the cor-
responding linguistic pattern. If the sentence does not match
any of the patterns we defined, the classifier simply returns
the label “No patterns found”.

The SAClassifier analyzes the sentences trough the sen-
timent annotator provided by the Stanford CoreNLP [18]
and for each sentence in input returns a sentiment value
from 1 (strong negative) to 5 (strong positive). We use
this sentiment prediction system because it is independent of
hard-coded dictionaries – a drawback from lexical sentiment
analysis techniques that have been previously used for the
analysis of app reviews [12], [20], [14]. The TAClassifier

exploits the functionalities provided by the Apache Lucene
API2 for analyzing text content in user reviews. Specifically,
this classifier performs a stop-words removal (i.e., words
not containing important information) through the Stop-

Filter and normalizes the input sentences (i.e., reduces the
inflected words in the root form) through the EnglishStem-

mer in combination with the SnowballFilter in order to
extract a set of meaningful terms that are weighted using
the tf (term frequency), which weights each word i in a
review j as:

tfi,j =
rfi,j∑m

k=1 rfk,j

where rfi,j is the raw frequency (number of occurrences) of
word i in review j. We use the tf (term frequency) instead of
tf-idf indexing because the use of the idf penalizes too much
terms (as “fix”, “problem”, or “feature”) appearing in many
reviews [21]. Such terms may constitute interesting features
for guiding ML techniques in classifying useful feedback.

2.2 Classification via ML Techniques
We used the NLP, TA and SA features extracted in the

previous phase of the approach to train ML techniques and
classify app reviews according to the taxonomy in Table
1. To integrate ML algorithms in our code, we used the
Weka API [22]. The MLClassifier module provides a set of
java methods for prediction, each of them exploits a differ-
ent pre-trained ML model and uses a specific combination
of the three kinds of extracted features: (i) text features

1http://www.ifi.uzh.ch/seal/people/panichella/Appendix.pdf
2http://lucene.apache.org

1024

Amir
Highlight

Amir
Highlight

Amir
Highlight

Amir
Highlight

Amir
Highlight

Amir
Highlight

Amir
Highlight

Amir
Highlight

Amir
Highlight

Amir
Highlight

Amir
Highlight

Amir
Highlight

Amir
Highlight

Amir
Highlight

Amir
Highlight

Amir
Highlight

Amir
Highlight




