In today’s highly competitive and increasingly uncertain world, the quality and timeliness of an organization’s “Business Intelligence (BI)” can mean not only the difference between profit and loss but even the difference between survival and bankruptcy. The term BI is relatively new but it is synonymous with a range of applications that have been around for years: On-Line Transaction Processing, Data Warehousing, Data Mining, Intelligent Decision Support System, Intelligent Agent, Knowledge Management System, Supply Chain Management, Customer Relationship Management, Enterprise Resource Planning, Enterprise Information Management and so on. BI is the conversion of data into information in such a way that the business is able to analyze the information to gain insight and take action. in other words BI exquisites data and information for use in decision-making activities. The course provides an introduction to above tools, techniques and applications. The course also studies related concepts such as data cleaning, data cleansing and so on.
Prerequisites
Students are expected to have good knowledge of Databases, Artificial Intelligence and software engineering concepts
No | Topics |
1 | Introduction to Business Intelligence (معرفی هوش تجاری) |
2 | Business Intelligence Architecture (معماری هوش تجاری) |
3 | Introduction to Data Warehouse (معرفی پایگاه داده تحلیلی) |
4 | Data Warehouse Lifecycle (چرخه حیات پایگاه داده تحلیلی) |
5 | Requirements Engineering in Information Systems (مهندسی نیازمندی ها در سیستم های اطلاعاتی) |
6 | Data Warehouse Architecture (معماری پایگاه داده تحلیلی) |
7 | Introduction to Multi-Dimensional Data Model (معرفی مدل داده چند بعدی) |
8 | Extract-Transform-Load in Data Warehouse (استخراج-تبدیل-بارگذاری در پایگاه داده تحلیلی) |
9 | ETL Tools, Applications and Techniques (ابزارها، کاربردها و تکنیک های ETL) |
10 | Principles and Concepts of Data Quality (اصول و مفاهیم کیفیت داده) |
11 | Introduction to Information Dashboards (معرفی داشبورد های اطلاعاتی) |
12 | Principles of Information Dashboards Design and Implementation (اصول تحلیل و طراحی داشبورد های اطلاعاتی) |
13 | Information Representation Tools, Applications and Techniques (ابزارها، کاربردها و تکنیک های نمایش اطلاعات) |
14 | Introduction to Decision Support Systems (معرفی سیستم های تصمیم یار) |
15 | Introduction to Data Mining (معرفی داده کاوی) |
16 | Data Mining Tools, Applications and Techniques (ابزارها، کاربردها و تکنیک های داده کاوی) |
17 | Knowledge Management (مدیریت دانش) |
18 | Business Intelligence Project Lifecycle (چرخه حیات پروژه های هوش تجاری) |
19 | Phase 1: Justification (مرحله اول: بررسی اولیه) |
20 | Phase 2: Planning (مرحله دوم: طرح ریزی) |
21 | Phase 3: Business Analysis (مرحله سوم: تحلیل کسب و کار) |
22 | Phase 4: Design (مرحله چهارم: طراحی) |
23 | Phase 5: Construction (مرحله پنجم: ساخت) |
24 | Phase 6: Deployment (مرحله ششم: نصب و استقرار) |
By the end of this course, you will know:
what ideas, what new trends and what new possibilities are offered by BI and related tools, techniques, applications and concepts.
Criteria | Total Mark | Comments |
---|---|---|
Homework | 20% | |
Project | 35% | |
Midterm | 20% | |
Final Exam | 25% |
Text Books:
- Larissa T. Moss, Shaku Atre, “Business Intelligence Roadmap: The Complete Project Lifecycle for Decision Support Applications” , Addison Wesley, 2003.
- Efraim Turban, Ramesh Sharda, Dursun Delen, David King, “Business Intelligence: A Managerial Approach” , 2nd Edition, Prentice Hall, 2010.
- Abraham Silberschatz, Henry F. Korth, S. Sudarshan, “Database System Concepts”, 6th Edition, McGrow Hill, 2011.
- Stephen Few, “Information Dashboard Design” , 1st Edition, O’Reilly, 2006.
- Ralph Kimball, Margy Ross, Warren Thornthwaite, Joy Munday, Bob Becker, “The Data Warehouse Lifecycle Toolkit” , 2nd Edition, Wiley, 2008.
Class Notes
Business Intelligence Roadmap (by Larissa T. Moss) Slides
Phase 1: Justification
Phase 2: Planning
Phase 3: Business Analysis
Phase 4: Design
Phase 5: Construction
Phase 6: Deployment
Chapter 1: Business Case Assessment
Chapter 2: Enterprise Infrastructure Evaluation
Chapter 4: Project Requirements Definition
Chapter 6: Application Prototyping
Chapter 7: Meta Data Repository Analysis
Chapter 8: Database Design
Chapter 10: Meta Data Repository Design
Chapter 11: Extract-Transform-Load Development
Chapter 12: Application Development
Chapter 13: Data Mining
Chapter 14: Meta Data Repository Development
Chapter 15: Implementation
Database System Concepts (by Abraham Silberschatz) Slides
Decision Support and Business Intelligence Systems (by Efraim Turban) Slides
Other Slides
1. Data Warehouse
2. Data Warehouse Definition
3. Agile Enterprise Data Warehousing
4. Data Warehouse Architecture
5. Data Warehouse Maintenance
6. Back-End Tools
7. ETL Tools
8. OLTP vs. OLAP
9. Data Warehousing and Data Cleaning
10. Data Mining
11. Intelligent Agent
12. MRP and ERP
13. Introduction to Business Intelligence (Part 1)
14. Introduction to Business Intelligence (Part 2)
15. Business Intelligence Roadmap
16. Chapter 8: Database Design
17. Data Quality
18. Data Warehouse
19. Data Warehouse Design Architecture
20. An Introduction to WEKA
21. User Interface Design
2018:
22. Introduction to Gartner Inc.
23. Big Data
24. User Interface Design
25. Magic Quadrant for Business Intelligence and Analytics Platforms
26. Compare Microsoft Power BI vs. QlikView
27. Introducing Microsoft Power BI
28. Working With QlikView
29. Pentaho Reporting Tutorial Points
30. Dundas BI Support